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ABSTRACT 

 
The computational drawbacks of existing numerical methods have forced researchers to rely 
on heuristic algorithms. Heuristic methods are powerful in obtaining the solution of 
optimization problems. The Particle Swarm Optimization (PSO) method is a numerical 
optimization technique that simulates the social behavior of birds, fishes and bugs. Similar to 
birds seek to find food, the optimum design process seeks to find the optimum solution. In the 
present study, a combination between nominal PSO and Gaussian PSO is applied to get the 
optimum design for steel structures. A modified fly back technique is used to deal with 
constraints. Standard design problems selected from literatures are used to evaluate the 
performance of the proposed technique. The comparison showed that design obtained using 
the present algorithm is more efficient and economical than that provided by other design 
approaches. 
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1. INTRODUCTION 
 

Structural design optimization is a critical and challenging activity that has received 
considerable attention in the last two decades. High number of design variables, largeness of 
the search space and controlling great number of design constraints are major preventive 
factors in performing optimum design in a reasonable computation time. Despite these facts, 
designers and owners have always desired to have optimal structures. 

 
The developments in the stochastic search techniques in numerical optimization have 

provided efficient optimum design tools for structural designers. The basic idea behind these 
stochastic search techniques is to simulate the natural phenomena. These stochastic search 
techniques do not require the derivatives of the objective function and constraints and they 
use probabilistic transition rules not deterministic rules [1]. The particle swarm optimization 
(PSO), that was only a few years ago a curiosity, has now attracted the interest of researchers 
around the globe.  
 

In the present study, a combination between nominal PSO and Gaussian PSO is applied in 
a new technique to get the optimum design for steel structures. The development of the paper 
is as follows: Section 2 presents the general formulation of the particle swarm optimization 
approach. Section 3 literature review of PSO and structural steel design are presented. 
Section 4 presents the use of Gauss Distribution in PSO. In Section 5, the problem 
formulation and constraint handling technique are discussed.  In section 7, three different 
case studies are analyzed to demonstrate the effectiveness of the approach in finding optimal 
structural optimization solutions. Finally, the paper closes with main concluding remarks. 
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2. PARTICLE SWARM OPTIMIZATION 
 

In the simplest version of PSO, each member of the particle swarm is moved through a 
problem space by two elastic forces. One attracting it with random magnitude to the best 
location so far encountered by the particle, it is called Lbest (local best). The other attracting it 
with random magnitude to the best location encountered by any member of the swarm which 
is typically denoted by Gbest (global best). The position and velocity of each particle are 
updated at each time step until the swarm as a whole converges to an optimum [2 and 3]. 

 
The original PSO formulae as described in [4] are: 
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Where: 
 i= (1, 2, 3…………, N), and N is the number of particles. 
 c1 and c2 are positive constants, referred to as cognitive and social parameters, 

respectively. 

 
tr1  and 

tr2  are random vectors with components uniformly distributed in (0, 1). 
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Dx ), the location of the i th particle at t th iteration, and D is the 

number of design variables. 
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DV ), the velocity vector of the ith particle at tth iteration. 
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Dp ), represents the best previous position vector of the ith 

particle at tth iteration. 

 gp
= ( 1p , 2p ,…., Dp ), the symbol g represents the index of the best particle 

among all the particles in the population. 
 

The initial values of xi
t and Vi

t can be assigned randomly. The initial value for Pi
t will be 

xi
t. The initial value of Pg can be determined by evaluating all particles in the group and 

selecting the initial position of the best particle. Figure (1) represents the velocity updating in 
PSO. 
 

Another parameter called constriction factor (k) is introduced to insure a convergence of 
PSO. A simplified method of incorporating it appears in the following equations: 
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Mathematical back ground for Eqs. (2.3, 2.4 and 2.5) is widely discussed and proofed by 
Ozcan, Mohan, Clerc and Kennedy [5 and 6].  
 
3. LITERATURE REVIEW OF PSO AND STRUCTURAL  STEEL DESIGN 
 

In the following paragraphs the most important researches who employ the PSO in the 
optimization of structural design are presented. 

 
Fourie and Groenwold [7] applied the particle swarm optimization algorithm (PSOA) to 

the optimal design of structures with sizing and shape variables. Some new operators, namely 
elite particle and elite velocity, had been used. 

  
The application of the PSO to the optimal sizing design of truss structures was studied by 

Schutte, and Groenwold, [8]. A simple methodology was presented to accommodate the 
stress and displacement constraints during initial iterations. The construction factor and 
dynamic inertia weight were applied to PSO and a penalty function was used as a constraints 
handling technique. 

 
Bochenek and Foryś [9] considered structural optimization against instability using PSO. 

The standard maximization of critical load was performed both for single and double 
buckling load. The modified optimization for post-buckling behavior was also performed.  

 
Design and optimization of steel structures for fire resistance was also considered by 

Jármai, et al. [10] using modified PSO. A pressure vessel supporting frame was considered 
using square hollow section columns and square or rectangular hollow section for beams. 
Overall and local buckling constraints were considered and the steel frame was designed 
according to Eurocodes (1) and (3). 

  
The early work of use of PSO to optimize the design of steel structure was presented by 

Heinisuo, M. et al. [11]. In their work, the design of welded steel beams for a typical structure 
was considered.  

 

X 

Y 

xt     : current location of particle, 
xt+1: new location of particle, 
Vt   : current velocity, 
Vt+1: modified velocity, 
Vpbest : velocity based on local best, 
Vgbest : velocity based on global best 

xt 

xt+1 

Vt
 

Vt+1
 

Vpbest 

Vgbest 

Fig. (1): PSO Position Updating 
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The tubular truss optimization using heuristic algorithm had been considered by Jalkanen 
[12]. The multi-criteria topology, shape and sizing optimization problem were formulated 
based on both material and manufacturing cost. Design constraints satisfied the requirements 
of steel design rules of Eurocode (3). 

 
Kaveh and Talatahari presented a Discrete Particle Swarm Ant Colony Optimization 

(DPSACO) for design of steel truss [13] and steel frame [14]. The particle swarm ant colony 
optimization applied the particle swarm optimizer with passive congregation for global 
optimization and ant colony optimization worked as a local search. 

 
Later, Kaveh and Talatahari [15 and 16] presented a hybrid algorithm based on the Particle 

Swarm Optimization with Passive Congregation (PSOPC), the Ant Colony Algorithm 
(ACO), and the Harmony Search (HS) approach to solve engineering optimization problems. 
The idea of ACO worked as a local search and HS utilized to handle the boundary 
constraints. 

 
A refined version of particle swarm optimization technique for the optimum design of 

steel trusses was proposed by Doğan et al. [17]. In their work, an additional velocity term was 
defined and added to let the particle move randomly in certain directions in the close 
neighborhood of its current position, to avoid the stuck in local optimum. The penalty 
function technique was used to handle the ASD-AISC code constraints. 

 
The composite steel box girder was investigated under size, shape and topology 

optimization using Particle Swarm Optimization by Ghasemi and Dizangian [18]. The 
objective function was the minimization of total weight of the structure under strength and 
serviceability constraints, enforced by penalty functions. All design requirements of 
AASHTO and Iranian Codes of Practice (ICP) for loading of bridges were considered. 

 
A parallel version for PSO optimizer was studied by Yang and Zhang, [19] to solve large 

truss topological optimization problems. It was the first modified PSO that can solve truss 
topology optimization problem with more than 200 design variables. This modified PSO was 
based on Lbest model of PSO. In their model, the information linked between different 
particles were set by some topology technique, i.e. one particle could share the information 
only with some particles like its neighbors, not with all the other ones. The Lbest model tried 
to prevent premature convergence by maintaining diversity of potential problem solutions. 

 
Particle Swarm method based optimum design algorithm for unbraced steel frames was 

presented by Doğan and Saka [1]. In the optimum design algorithm the design constraints 
were imposed in accordance with LRFD-AISC. In the design of beam-column members the 
combined strength constraints were considered by takeing into account the lateral tensional 
buckling of the member. The algorithm developed selected optimum W sections for beams 
and columns of unbraced frame from 272 W-sections list. This selection was carried out such 
that design constraints imposed by the LRFD-AISC were satisfied and the minimum frame 
weight was obtained. 

 
Kaveh et al. [20] introduced a new hybrid advanced algorithm by using the abilities of 

heuristic Particle Swarm Ant Colony Optimization (HPSACO) and a Hybrid Big Bang–Big 
Crunch algorithm (HBB–BC). In their study, the advantages of the HPSACO and HBB–BC 
ere combined to improve the performance of the resulted algorithm. They considered three 
main steps as global searching step, local searching step and location controlling step. These 
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steps all together improved the exploration and exploitation abilities of the algorithm. Their 
proposed method was tested on frame structures from the literatures. 

 
A modified algorithm called Accelerated Particle Swarm Optimization (APSO) was 

developed by Talatahari et al. [21] for finding optimum design of steel frame structures. 
APSO showed some extra advantages in convergence for global search. The modifications on 
standard PSO effectively accelerated the convergence rate of the algorithm and improved the 
performance of the algorithm in finding better optimum solutions.  
 
4. GAUSS-PSO COMBINATION 
 

As a member of stochastic search algorithms, PSO has drawbacks. Although PSO 
converges to an optimum much faster than other evolutionary algorithms, it usually cannot 
improve the quality of the solutions as the number of iterations is increased [22]. Many 
adjustments have been made to the original algorithm that introduced in [4] over the past 
decade in order to improve general performance by incorporate either the capabilities of other 
evolutionary computation techniques. Some researchers have studied a version that 
eliminates the current position term, and simply places the particle at a new position based on 
previous successes. 

 
One of the important modifications on PSO is the using of Gauss Distribution instead of 

the velocity and position update equations of PSO. It is greatly simplifies the particles swarm 
by stripping away the velocity rule, but performance seems not good as canonical one in 
some tested problems [23]. 

 
In Bare-Bones formulations of PSO, which described by Kennedy [24] particles proposed 

to move according to a probability distribution rather than through the addition of velocity, 
which called “velocity-free” PSO.  

 
In a first study of bare-bones PSO, the particle update rule was replaced with a Gaussian 

distribution of mean (Pi+Pl)/2 and standard deviation |Pi-Pl|, thus Eqs. (2.1) and (2.2) will be 
replaced by Eq. (2.6) [13 to 18]:  
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where xi
t+1 is the position of the particle to be updated, G (mean, s.d.) is a Gaussian random 

number generator , pi and pl are the best position reached by the ith particle and the best 
position reached by any particle in the neighborhood of the ith particle, respectively. 
 

In the present paper, the authors introduce a new strategy to deal with the Gauss 
Distribution and PSO by combining them in the search. First, fast search is started using the 
normal PSO, which give a fast trapped to local optimum after a number of iterations, then the 
Gaussian-PSO starts the fine tuning search. This strategy gives good results and fast 
convergence compared to using normal PSO only. Furthermore, Gaussian-PSO is more 
simple than the other hybridization methods. 
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5. PROBLEM FORMULATION AND CONSTRAINTS HANDLING 
 

The main concept in the design of steel frames is to find the sections for columns and 
beams. The design should be carried out in such a way that the frame satisfies the 
serviceability and strength requirements specified by the design code of practice while the 
economy is observed in the overall or material cost of the frame. These are the design 
variables, constraints and objective function, respectively. 
 

Similar to other stochastic optimization methods, the PSO algorithm is defined for 
unconstrained problems [25]. One of the most simple and effective method to deal with 
constraints is the fly-back mechanism, which purposed firstly by Hu et al. [26].  

 
In the current study, a modified fly-back mechanism is used to handle the problem 

specific constraints which can be described as follows: 
 

1-  During the initialization process:  
a. All particles are started with feasible solutions.  

2- When updating the global best memory (Gbest): 
a. If the new solution is infeasible, return back to the previous feasible solution. 
b. Between two feasible solutions, the one having better objective function value 

is preferred. 
3- When updating the personal best memories (Pbest): 

a. Any feasible solution is preferred to any infeasible solution. 
b. Between two feasible solutions, the one having better objective function value 

is preferred. 
c. Between two infeasible solutions, the one having smaller sum of constraint 

violation is preferred. 
 

This modified technique is powerful in dealing with constraints and more simplified from 
other techniques such as  penalty function, as no additional parameters are needed for the 
applied constraints – handling technique.   
 

The boundary conditions are the limitations of sections area according to slandered tables 
of steel sections, or the thicknesses of steel plates available in the market in case of built up 
section. In the present work, before updating memories and check constraints, each design 
variable passes through a filter which works as follows: 

1- Pass the design variable if it satisfying the boundary conditions. 
2- Otherwise, regenerate the design variable to satisfying the boundary conditions. 
 
Algorithmic flow chart of the proposed technique is shown in Fig. 2 
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6. NUMERICAL EXAMPLES 
 

To demonstrate the efficiency of the algorithm, three well-known examples selected from 
the literatures are designed using the proposed method. In these designs, the duration of the 
normal PSO is considered as the number of iterations in which the algorithm use PSO in 
search before starting Gauss search (denoted as G). The value of C1 and C2 in Eq. (2.1) are 
considered to be 2.1 and construction factor K is used. 

Start

Set N, D, C1, C2, 
r1, r2, T, G

Randomly Initialize 
Particle Velocities Xi 
with feasible Values 

If T=1

Check if the 
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No
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Regenerate Satisfying 
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Best Lbest

Update The Global Best 
Gbest

Evaluate Objective 
Function (Fitness) F(x) 
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Straining Actions

Yes

N= No. of Particles
D=No. of Design Variables
C1=C2=2.1
R1 & r2 are random numbers
T= No. of Iterations
G= Duration of Normal PSO
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Evaluate Violation of 
Constraints 
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(Modified Fly Back 

Mechanism)

Update new 
Particle’s 
Positions 

and 
Velocities  

Fig. (2): Algorithmic Flow Chart 
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Example No. (1): Two Bars Truss  
 

The first example is a benchmark example introduced in [7 and 27]. It is a simple truss 
structure depicted in Fig. 3. The member cross sections represent the design variables. Arora 
[27] gives an analytical solution of f = 8.046×103 kg which is the same truss weight obtained 
using the purposed algorithm.  A number of trials has been done to investigate the effect of 
the duration of normal PSO, each trial has 400 iterations and take less than 5 minutes. The 
convergence history is showed in Table 1 and Figs. 4 and 5. 

 
Table 1: Iterations Results for Example No. (1) 
 

Trial 
No. 

No. of 
Iterations 

(T) 

No. of 
Particles 

(N) 

Duration 
of PSO 

(G) 

Start 
Weight 

(Kg) 

Optimum 
Weight (Kg) 

Iteration of 
Optimum 

Weight 
  

1 400 5 50 14822.19 8046.24 150 

2 400 5 100 18061.35 8046.31 234 

3 400 5 150 16109.72 8046.24 291 

4 400 5 200 15771.68 8046.38 259 

5 400 5 100 14822.19 8046.28 225 

6 400 10 100 14577.46 8046.24 145 

7 400 15 100 10699.74 8046.24 152 

8 400 20 100 11586.28 8046.24 128 

 

 

 

 

 

 

 

 

 

 

 

 

 

P=1200 KN 

0.4 m 

0.3 m 

E = 207 GPa 
ρ = 7850 kg/m3 
Fy = 160 MPa 
Amin = 0.01 m2 
 

Fig. (3): Two Bars Truss  
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Example No. (2): Two – bay Three Storey Steel Frame 
 

This Frame was considered by Kaveh and Malakoutirad [28]. Figure (6) shows the 
configuration and applied loads of the frame. The 15 members of the structure have been 
categorized into seven groups. Each group has the same cross section and represents a design 
variable as indicated in the figure.  

Fig. (4): Iteration History for Example No. 1.  
(No. of particles =5 and changing the duration of PSO search) 

Fig. (5): Iteration History for Example No. 1.  
(No. of particles varied and the duration of PSO search is 100 iterations) 
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The material properties are: 

E = 200 GPa 
ρ = 7850 kg/m3 
Fy= 235 MPa 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
The constraints include the design specifications of AISC-ASD for each member. The 

allowable inter-storey drift is 12 mm and allowable sway of the top storey is 36 mm. The 
population sizes considered by Kaveh was 425 particles and 5000 iterations were used. 
Figure (8) shows the iteration history of the compared example. 

 

a) Loading of the frame   b) Member grouping 
 

Fig. (6): Two-bay Three-Storey Frame 

Fig. (7): Iteration History for Example No. 2.  
(No. of particles = 5 and the duration of PSO search is 100 iterations) 
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Figure (7) shows the iteration history for this example using current purposed algorithm. 
This example demonstrates the effeteness of Gauss distribution on the search. In this work, 
only 5 particles and 200 iterations are used to obtain the same results with a total running 
time less than 26 minutes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Example No. (3): Two – bay Six Storey Steel Frame 
 

The third example is two-bay, six storey steel frame shown in Fig. (9). This frame was 
considered firstly by Kameshki [29] using GA, and Kaveh et al. [16] using Big – Bang 
algorithm and later considered by Dogan and Saka [1] using PSO. The frame consists of 
thirty members that are collected in eight groups as shown in the figure. The allowable inter-
storey drift is 12 mm while the lateral displacement of the top storey is limited to 72 mm. The 
modulus of elasticity is 200 GPa. 

 
According to Dogan and Saka, the optimum design is determined after 6500 iterations 

and the minimum weight of the frame is 7533 kg. In the present work, an optimum weight of 
7047 kg is obtained after only 250 iterations using 15 particles. Figure (10) shows the 
iteration history of the design.  

 
7. CONCLUSIONS 

A particle swarm optimizer and Gaussian-PSO are combined to develop an optimum 
design algorithm for steel frames. Constraints are handled with modified fly-back 
mechanism. The design algorithm is mathematically quite simple and effective in finding 
solutions of combinatorial optimization problems. The PSO is acting as fast optimizer and the 

 

Fig. (8). Iteration History for Example No. 2 as shown in [28]  
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Fig. (9). Two-bay Six-Storey Frame 

Fig. (10): Iteration History for Example No. 3.  
(No. of particles = 15 and the duration of PSO search is 100 

i i )
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Gaussian–PSO plays the fine tuning search. The technique reduces the number of 
iterations required to reach the optimum design (100 to 400 iterations) and also allow using 
smaller number of particles (5 to 15 particles). The studied examples show that 100 iterations 
are enough for PSO fast search before starting Gaussian–PSO. Moreover, the studied 
examples show that the modified fly-back mechanism is powerful in particle swarm 
optimization technique. 
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